Essential Math for Data Science

Essential Math for Data Science
出版时间:2022.6
官网链接:O’Reilly
下载地址:百度网盘(PDF+EPUB)

内容简介:

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you’ll also gain practical insights into the state of data science and how to use those insights to maximize your career.

Learn how to:

  • Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning
  • Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon
  • Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance
  • Manipulate vectors and matrices and perform matrix decomposition
  • Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks
  • Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market

给TA买糖
共{{data.count}}人
人已赞赏
电子书

Practical Simulations for Machine Learning

2022-6-14 19:49:12

电子书

Consul: Up and Running

2022-6-14 20:50:12

搜索