出版时间:2022.3
官网链接:O’Reilly
下载地址:百度网盘(PDF+EPUB)
内容简介:
earn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build using Google Cloud Platform (GCP). This hands-on guide shows data engineers and data scientists how to implement an end-to-end data pipeline with cloud native tools on GCP.
Throughout this updated second edition, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by building a data pipeline in your own project on GCP, and discover how to solve data science problems in a transformative and more collaborative way.
You’ll learn how to:
- Employ best practices in building highly scalable data and ML pipelines on Google Cloud
- Automate and schedule data ingest using Cloud Run
- Create and populate a dashboard in Data Studio
- Build a real-time analytics pipeline using Pub/Sub, Dataflow, and BigQuery
- Conduct interactive data exploration with BigQuery
- Create a Bayesian model with Spark on Cloud Dataproc
- Forecast time series and do anomaly detection with BigQuery ML
- Aggregate within time windows with Dataflow
- Train explainable machine learning models with Vertex AI
- Operationalize ML with Vertex AI Pipelines