出版时间:2018.5
官网链接:Manning
下载地址:百度网盘(PDF+EPUB+MOBI)
提取码:3ydu
内容简介:
about the technology
If you’re building machine learning models to be used on a small scale, you don’t need this book. But if you’re a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.
about the book
Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You’ll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java as well.
what’s inside
- Working with Spark, MLlib, and Akka
- Reactive design patterns
- Monitoring and maintaining a large-scale system
- Futures, actors, and supervision
about the reader
Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.
about the author
Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.